Ressource pédagogique : Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4)
Présentation de: Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4)
Informations pratiques sur cette ressource
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Description de la ressource pédagogique
Description (résumé)
In order to control locally a space-?time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-?like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-?posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background.
"Domaine(s)" et indice(s) Dewey
- Mathématiques (510)
Thème(s)
Intervenants, édition et diffusion
Intervenants
Diffusion
Document(s) annexe(s) - Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4)
- Cette ressource fait partie de
AUTEUR(S)
-
Jérémie Szeftel
EN SAVOIR PLUS
-
Identifiant de la fiche
22503 -
Identifiant
oai:canal-u.fr:22503 -
Schéma de la métadonnée
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML
-
Entrepôt d'origine