Ressource pédagogique : Alexandre Sukhov - J-complex curves: some applications (Part1)
Présentation de: Alexandre Sukhov - J-complex curves: some applications (Part1)
Informations pratiques sur cette ressource
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Description de la ressource pédagogique
Description (résumé)
We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of the Weinstein conjecture. 3. J-complex lines and hyperbolicity. The KAM theory and Moser’s stability theorem for entire J-complex curves in tori. Global deformation and Bangert’s theorem.
"Domaine(s)" et indice(s) Dewey
- Mathématiques (510)
Thème(s)
Intervenants, édition et diffusion
Intervenants
Diffusion
Document(s) annexe(s) - Alexandre Sukhov - J-complex curves: some applications (Part1)
- Cette ressource fait partie de
AUTEUR(S)
-
Alexandre Sukhov
EN SAVOIR PLUS
-
Identifiant de la fiche
24162 -
Identifiant
oai:canal-u.fr:24162 -
Schéma de la métadonnée
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML
-
Entrepôt d'origine