Ressource pédagogique : Lars Andersson - Geometry and analysis in black hole spacetimes (Part 3)

cours / présentation - Date de création : 18-06-2014
Auteur(s) : Lars Andersson
Partagez !

Présentation de: Lars Andersson - Geometry and analysis in black hole spacetimes (Part 3)

Informations pratiques sur cette ressource

Langue du document : Anglais
Type pédagogique : cours / présentation
Niveau : doctorat
Durée d'exécution : 2 heures 13 minutes 24 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 4.84 Go
Droits d'auteur : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

Description de la ressource pédagogique

Description (résumé)

Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity. Following a brief introduction to the evolution problem for the Einstein equations, I will give some background on geometry of the Kerr spacetime. The analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior and how they can be overcome. A fundamentally important as pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is time, I will discuss in this context some new conservation laws for fields of non zero spin.

"Domaine(s)" et indice(s) Dewey

  • Mathématiques (510)

Thème(s)

Document(s) annexe(s) - Lars Andersson - Geometry and analysis in black hole spacetimes (Part 3)

Partagez !

AUTEUR(S)

  • Lars Andersson

EN SAVOIR PLUS

  • Identifiant de la fiche
    22345
  • Identifiant
    oai:canal-u.fr:22345
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-U