Ressource pédagogique : Franc Forstneri? - Non singular holomorphic foliations on Stein manifolds (Part 1)
Présentation de: Franc Forstneri? - Non singular holomorphic foliations on Stein manifolds (Part 1)
Informations pratiques sur cette ressource
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Description de la ressource pédagogique
Description (résumé)
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov.
"Domaine(s)" et indice(s) Dewey
- Mathématiques (510)
Thème(s)
Intervenants, édition et diffusion
Intervenants
Diffusion
Document(s) annexe(s) - Franc Forstneri? - Non singular holomorphic foliations on Stein manifolds (Part 1)
- Cette ressource fait partie de
AUTEUR(S)
-
Franc Forstneri?
EN SAVOIR PLUS
-
Identifiant de la fiche
23034 -
Identifiant
oai:canal-u.fr:23034 -
Schéma de la métadonnée
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML
-
Entrepôt d'origine