Ressource pédagogique : Melanie Rupflin - Horizontal curves of metrics and applications to geometric flows

cours / présentation - Date de création : 30-06-2016
Auteur(s) : Melanie RUPFLIN
Partagez !

Présentation de: Melanie Rupflin - Horizontal curves of metrics and applications to geometric flows

Informations pratiques sur cette ressource

Langue du document : Anglais
Type pédagogique : cours / présentation
Niveau : doctorat
Durée d'exécution : 51 minutes 50 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 1.84 Go
Droits d'auteur : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

Description de la ressource pédagogique

Description (résumé)

On closed surfaces there are three basic ways to evolve a metric, by conformal change, by pull-back with diffeomorphisms and by horizontal curves, moving orthogonally to the first two types of evolution. As we will discuss in this talk, horizontal curves are very well behaved even if the underlying conformal structures degenerate in moduli space as t to T. We can describe where the metrics will have essentially settled down to the limit by time t T as opposed to regions on which the metric still has to do an infinite amount of stretching. This quantified information is essential in applications and allows us to prove a "no-loss-of-topology" result at finite time singularities of Teichmüller harmonic map flow which, combined with earlier work, yields that this geometric flow decomposes every map into a collection of branched minimal immersions and curves. This is joint work with Peter Topping

"Domaine(s)" et indice(s) Dewey

  • Mathématiques (510)

Thème(s)

Intervenants, édition et diffusion

Intervenants

Fournisseur(s) de contenus : Fanny Bastien

Diffusion

Document(s) annexe(s) - Melanie Rupflin - Horizontal curves of metrics and applications to geometric flows

Partagez !

AUTEUR(S)

  • Melanie RUPFLIN

EN SAVOIR PLUS

  • Identifiant de la fiche
    24224
  • Identifiant
    oai:canal-u.fr:24224
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-U