Ressource pédagogique : D. Stern - Harmonic map methods in spectral geometry
Présentation de: D. Stern - Harmonic map methods in spectral geometry
Informations pratiques sur cette ressource
Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Description de la ressource pédagogique
Description (résumé)
Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to connections to the study of sphere-valued harmonic maps and minimal immersions. In this talk, I'll describe a series of results which shed new light on this problem by relating it to the variational theory of the Dirichlet energy on sphere-valued maps. Recent applications include new (H^{-1}-)stability results for the maximization of the first and second Laplacian eigenvalues, and a proof that metrics maximizing the first Steklov eigenvalue on a surface of genus g and k boundary components limit to the lambda_1-maximizing metric on the closed surface of genus g as k becomes large (in particular, the associated free boundary minimal surfaces in B^{N+1} converge as varifolds to the associated closed minimal surface in S^N). Based on joint works with Mikhail Karpukhin, Mickael Nahon and Iosif Polterovich.
"Domaine(s)" et indice(s) Dewey
- Mathématiques (510)
Thème(s)
Intervenants, édition et diffusion
Intervenants
Diffusion
Document(s) annexe(s) - D. Stern - Harmonic map methods in spectral geometry
- Cette ressource fait partie de
AUTEUR(S)
-
Daniel STERN
EN SAVOIR PLUS
-
Identifiant de la fiche
63103 -
Identifiant
oai:canal-u.fr:63103 -
Schéma de la métadonnée
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML
-
Entrepôt d'origine