5 résultats : SONG ANTOINE

Attention : l'accès aux ressources peut être restreint, soit pour des raisons juridiques, soit par la volonté de l'auteur.
5 résultats
page 1 sur 1
résultats 1 à 5
Canal-U
Description : Given a positive epsilon, a closed Einstein 4-manifold admits a natural thick-thin decomposition. I will explain how, for any delta, one can modify the Einstein metric to a bounded sectional curvature metric so that the thick part has volume linearly bounded by the Euler characteristic and ...
Mots clés : Grenoble, eem2021, contraintes de courbures et espaces métriques, curvature constraints and spaces of metrics, minimal volume, Einstein 4-manifolds
Date : 28-06-2021
Droits : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Canal-U
Description : I will discuss the notion of minimal volume and some of its variants. The minimal volume of a manifold is defined as the infimum of the volume over all metrics with sectional curvature between -1 and 1. Such an invariant is closely related to "collapsing theory", a far reaching set of results ...
Mots clés : Grenoble, eem2021, contraintes de courbures et espaces métriques, curvature constraints and spaces of metrics, minimal volume
Date : 21-06-2021
Droits : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Canal-U
Description : I will discuss the notion of minimal volume and some of its variants. The minimal volume of a manifold is defined as the infimum of the volume over all metrics with sectional curvature between -1 and 1. Such an invariant is closely related to "collapsing theory", a far reaching set of results ...
Mots clés : Grenoble, eem2021, contraintes de courbures et espaces métriques, curvature constraints and spaces of metrics, minimal volume
Date : 22-06-2021
Droits : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Canal-U
Description : I will discuss the notion of minimal volume and some of its variants. The minimal volume of a manifold is defined as the infimum of the volume over all metrics with sectional curvature between -1 and 1. Such an invariant is closely related to "collapsing theory", a far reaching set of results ...
Mots clés : Grenoble, eem2021, contraintes de courbures et espaces métriques, curvature constraints and spaces of metrics, minimal volume
Date : 23-06-2021
Droits : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0
Canal-U
Description : I will discuss the notion of minimal volume and some of its variants. The minimal volume of a manifold is defined as the infimum of the volume over all metrics with sectional curvature between -1 and 1. Such an invariant is closely related to "collapsing theory", a far reaching set of results ...
Mots clés : Grenoble, eem2021, contraintes de courbures et espaces métriques, curvature constraints and spaces of metrics, minimal volume
Date : 24-06-2021
Droits : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0