Ressource pédagogique : Applications linéaires

cours / présentation, autoévaluation, questionnaire - Date de création : 11-10-2012
Auteur(s) : Martine Arrou-Vignod
Partagez !

Présentation de: Applications linéaires

Informations pratiques sur cette ressource

Langue du document : Français
Type pédagogique : cours / présentation, autoévaluation, questionnaire
Niveau : enseignement supérieur, licence
Langue de l'apprenant : Français
Contenu : texte, image
Public(s) cible(s) : apprenant
Document : Document HTML
Droits d'auteur : pas libre de droits, gratuit
Ces contenus d'enseignement, propriété du campus numérique IUT en ligne, constituent une œuvre protégée par les lois sur la propriété intellectuelle.

Description de la ressource pédagogique

Description (résumé)

Module d'enseignement consacré aux applications linéaires ; à l'issue de cet apprentissage l'apprenant sera capable de : - déterminer si une application est linéaire, - déterminer si une application linéaire est : injective, surjective, bijective. - trouver le noyau et l'image d'une application linéaire, - déterminer la dimension du noyau, - déterminer la dimension de l'image, - déterminer si une application est : un endomorphisme, un isomorphisme, un automorphisme.

  • Granularité : cours
  • Structure : hiérarchique

"Domaine(s)" et indice(s) Dewey

  • Algèbre, Théorie des nombres, algèbre numérique, algèbre universelle, algèbre abstraite (512)

Thème(s)

Informations pédagogiques

  • Proposition d'utilisation : Pré-requis : pour aborder ce module l'apprenant doit posséder des notions de base sur : les ensembles, les lois internes sur un ensemble, les structures de groupes, les structures d'espaces vectoriels, les espaces vectoriels de dimension finie.

Intervenants, édition et diffusion

Intervenants

Validateur(s) de la métadonnée : Sylvain Duranton

Éditeur(s)

Diffusion

Partagez !

AUTEUR(S)

  • Martine Arrou-Vignod
    Iut de Velizy

ÉDITION

IUT en ligne

EN SAVOIR PLUS

  • Identifiant de la fiche
    http://ori.unit-c.fr/uid/unit-ori-wf-1-5397
  • Identifiant
    oai:www.unit.eu:unit-ori-wf-1-5397
  • Version
    11 Octobre 2012
  • Schéma de la métadonnée
  • Entrepôt d'origine
    UNIT
  • Date de publication
    11-10-2012